Revision Hip Arthroscopy
Surgical Revision of Residual Impingement

Brian D. Giordano
URMC Sports Medicine and Hip Preservation
CSHA San Francisco, CA
September 17, 2016

Disclosures
- Brian Giordano MD
 - Arthrex: Consultant, Research Support, Royalties
 - Carticept: Research Support
 - Louis B. Goldstein Grant: Internal research support

Growing Popularity of Hip Arthroscopy
- Rapid growth in volume of primary arthroscopies
 - A frequent component of fellowship training
 - 365% increase in volume of primary arthroscopies (Montgomery, et al., Arthroscopy 2013)
 - 600-fold increase in number of hip arthroscopists (Montgomery, et al., Arthroscopy 2013)
 - No growth in surgeons performing open HPS (Montgomery, et al., Arthroscopy 2013)
- Clinical outcomes generally excellent following arthroscopic/open tx
 - High rate of return to play (RTP)
 - Low complication and reoperation rate
 - Short and limited long term follow-up demonstrates durability

Hip Arthroscopy Failure
- Recurrent/persistent pain increasingly common
- Systematic review of >6000 patients
 - 6.3% reoperation rate (Harris, et al., Arthroscopy 2013)
 - Conversion to THA 2.9% (46%)
 - Revision arthroscopy 1.8% (30%)
 - PAO/Other open (11/13%)
- Majority female (60-70%)
 - Clohisy JC, et al., CORR 2013
- Younger in age
 - Riccardi BF, et al., AJSM 2014

Indications for Revision
- Many reasons for failure and indications for reoperation
 - Residual FAI (81%)
 - Labral/chondral (53/36%)
 - Capsulolabral adhesions (24%)
 - LT pathology (15%)
 - Capsular laxity/instability (14%)
 - Psoas pathology (13%)
 - Residual acetabular dysplasia (8.2%)
 - Second most common cause of failed arthroscopy in some studies
 - 19% adult DDH
 - Depends on cohort studied (adult vs. pediatric hip disease)
Residual FAI As A Mode of Failure

• Residual FAI initially reported as leading indication for revision
 - 95% Philippon MJ, et al. JOSI 2007
 - 31-93% rate documented in other series Bogunovic L, et al. CORR 2013
 - Majority of residual deformities mixed (~50%) Ross JR, et al. CORR 2015
• Unaddressed EAI emerging as a cause of failure Riccardi BF, et al. JOSI 2014

Strategies for Treatment

• Revision strategy depends on surgeon skill set and preference
• Dependent on population treated (Adult vs. Pediatric hip disease)
 - Arthroscopy
 • Successful for addressing residual FAI in ~80% Riccardi BF, et al. JOSI 2014
 - Open approaches
 • Surgical dislocation
 • Used in 32% of revisions in large prospective series Bogunovic L, et al. CORR 2013
 • More powerful tool for complex FAI or mixed FAI/EAI
 • Osteotomy
 • 8.2% Riccardi BF, et al. JOSI 2014

Optimized Imaging

• Adequate imaging requisite to precise correction
• 3D imaging ± planning software
 - Can define size and topography of bony lesions Kang KH, et al. CORR 2013
 - Notable improvement in FAI correction parameters using 3D CT planning software Ross JR, et al. CORR 2015
 - Mixed or complex impingement patterns
 - Intra/extra-articular

Management of Residual FAI

• Revision procedures performed: Cvetanovich GL, et al. Arthroscopy 2015
 - Femoral osteoplasty (25%)
 - Acetabuloplasty (18%)
 - Cartilage procedures (12%)
 - Labral debridement/repair (9/8%)
 - Lysis of adhesions (8%)
 - LT debridement/recon (5%)
 - Capsular closure/capsulorrhaphy (5%)
Management of Residual FAI

Revision Outcomes

- Improvements in all PROs
- All PROs but mHHS inferior for revision HA vs primary
- By 3 years, satisfaction rates and mHHS decrease
 - Aprato A, et al. KSSTA 2013
- For residual FAI
 - Larson CM, et al. AJSM 2014
- 62.7% vs. 81.7% Good/Excellent results

Predictors of Outcome

- Positive predictors of successful revision:
 - Residual FAI
 - Conflicting reports show no association
 - Larson CM, et al. AJSM 2014
 - Previous open surgery
 - Greater head-neck offset and AIIS decompression
 - Larson CM, et al. AJSM 2014
 - Labral repair/reconstruction
 - Larson CM, et al. AJSM 2014
 - Failed labral repair and hips requiring capsular plication
 - Philippon MJ, AJSM 2016
- Negative predictive factors related to outcome:
 - High grade chondral injury/osteoarthritis

Refocused Attention on Osseous Conflict

- Early focus on intra-articular FAI patterns and abnormal proximal femoral and acetabular morphology
- Common cause of failed arthroscopic procedure
- Evolving trend towards recognition of diverse FAI/EAI subtypes
 - Trochanteric-pelvic
 - Ischiofemoral
 - AIIS/Subspine
- Abnormal conflict often in extremes of motion
Trochanteric-Pelvic
- Conflict between GT and ilium
 - GT overgrowth/Proximal location
 - FN shortening
 - Soft tissue interposition
- Pain and reduced motion with ABD
- Troch advancement +/- FN lengthening
 - Eliminate conflict
 - Improve mechanical advantage
 - Optimize force coupling

Ischiofemoral Impingement
- Static or dynamic
- +/- Prior surgery
- Ischial sided deformity/pathology
 - Prior ischial avulsion (HO/Overgrowth)
 - Proximal HS pathology
- Femoral sided deformity/pathology
 - LT or posterior GT-ischial conflict
 - Malalignment of prox femur
 - Valgus, Coxa breva, Antetorsion
 - Femoral head medialization
 - Acetabular protrusio/profunda

AIIS/Subspine Impingement
- Evolving concept with varying patterns of IA/EA impingement
- Native hip or post-surgical
- Typically groin pain with deep flexion
- AIIS contacts distal femoral neck and/or associated soft tissues
- False "Cross-over"
- Variable association with IP snapping/contracture and ST impingement

Summary
- Recognize the diversity of impingement patterns
- Comprehensive treatment requisite to successful outcomes
 - Arthroscopic, open, or hybrid surgical approach may be required
 - Complete bony decompression with optimized head-neck offset
 - Labral preservation/reconstruction
 - Judicious capsular management
 - Treatment of all associated pain generators
- Counsel reasonable expectations, acknowledge limitations
- Dialog about other modes of failure and potential for future study

Thank You